\(\int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx\) [340]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 62 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {a} d}-\frac {\cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}} \]

[Out]

arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))/d/a^(1/2)-cot(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2795, 21, 2852, 212} \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}} \]

[In]

Int[Cot[c + d*x]^2/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]]/(Sqrt[a]*d) - Cot[c + d*x]/(d*Sqrt[a + a*Sin[c + d*x]
])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2795

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)/tan[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Simp[-(a + b*Sin[e +
f*x])^m/(f*Tan[e + f*x]), x] + Dist[1/a, Int[(a + b*Sin[e + f*x])^m*((b*m - a*(m + 1)*Sin[e + f*x])/Sin[e + f*
x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] &&  !LtQ[m, -1]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}+\frac {\int \frac {\csc (c+d x) \left (-\frac {a}{2}-\frac {1}{2} a \sin (c+d x)\right )}{\sqrt {a+a \sin (c+d x)}} \, dx}{a} \\ & = -\frac {\cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}-\frac {\int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx}{2 a} \\ & = -\frac {\cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d} \\ & = \frac {\text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {a} d}-\frac {\cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(138\) vs. \(2(62)=124\).

Time = 0.51 (sec) , antiderivative size = 138, normalized size of antiderivative = 2.23 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {\csc \left (\frac {1}{4} (c+d x)\right ) \sec \left (\frac {1}{4} (c+d x)\right ) \left (-2 \cos \left (\frac {1}{2} (c+d x)\right )+2 \sin \left (\frac {1}{2} (c+d x)\right )+\left (\log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right ) \sin (c+d x)\right ) \left (1+\tan \left (\frac {1}{2} (c+d x)\right )\right )}{8 d \sqrt {a (1+\sin (c+d x))}} \]

[In]

Integrate[Cot[c + d*x]^2/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(Csc[(c + d*x)/4]*Sec[(c + d*x)/4]*(-2*Cos[(c + d*x)/2] + 2*Sin[(c + d*x)/2] + (Log[1 + Cos[(c + d*x)/2] - Sin
[(c + d*x)/2]] - Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]])*Sin[c + d*x])*(1 + Tan[(c + d*x)/2]))/(8*d*Sqrt
[a*(1 + Sin[c + d*x])])

Maple [A] (verified)

Time = 0.11 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.66

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (-\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}}{\sqrt {a}}\right ) \sin \left (d x +c \right ) a +\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {a}\right )}{\sin \left (d x +c \right ) a^{\frac {3}{2}} \cos \left (d x +c \right ) \sqrt {a \left (1+\sin \left (d x +c \right )\right )}\, d}\) \(103\)

[In]

int(cos(d*x+c)^2*csc(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(-arctanh((a-a*sin(d*x+c))^(1/2)/a^(1/2))*sin(d*x+c)*a+(a-a*sin(d*x+
c))^(1/2)*a^(1/2))/sin(d*x+c)/a^(3/2)/cos(d*x+c)/(a*(1+sin(d*x+c)))^(1/2)/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 263 vs. \(2 (54) = 108\).

Time = 0.28 (sec) , antiderivative size = 263, normalized size of antiderivative = 4.24 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {{\left (\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) - 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + 4 \, \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{4 \, {\left (a d \cos \left (d x + c\right )^{2} - a d - {\left (a d \cos \left (d x + c\right ) + a d\right )} \sin \left (d x + c\right )\right )}} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*((cos(d*x + c)^2 - (cos(d*x + c) + 1)*sin(d*x + c) - 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2
 + 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a)
- 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x + c
)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) + 4*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(
d*x + c) + 1))/(a*d*cos(d*x + c)^2 - a*d - (a*d*cos(d*x + c) + a*d)*sin(d*x + c))

Sympy [F]

\[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\int \frac {\cos ^{2}{\left (c + d x \right )} \csc ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )}}\, dx \]

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**2/(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(cos(c + d*x)**2*csc(c + d*x)**2/sqrt(a*(sin(c + d*x) + 1)), x)

Maxima [F]

\[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{2} \csc \left (d x + c\right )^{2}}{\sqrt {a \sin \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^2*csc(d*x + c)^2/sqrt(a*sin(d*x + c) + a), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 132 vs. \(2 (54) = 108\).

Time = 0.37 (sec) , antiderivative size = 132, normalized size of antiderivative = 2.13 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {\sqrt {2} \sqrt {a} {\left (\frac {\sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right )}{a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}\right )}}{4 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/4*sqrt(2)*sqrt(a)*(sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(-1/4
*pi + 1/2*d*x + 1/2*c)))/(a*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 4*sin(-1/4*pi + 1/2*d*x + 1/2*c)/((2*sin(-1
/4*pi + 1/2*d*x + 1/2*c)^2 - 1)*a*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2}{{\sin \left (c+d\,x\right )}^2\,\sqrt {a+a\,\sin \left (c+d\,x\right )}} \,d x \]

[In]

int(cos(c + d*x)^2/(sin(c + d*x)^2*(a + a*sin(c + d*x))^(1/2)),x)

[Out]

int(cos(c + d*x)^2/(sin(c + d*x)^2*(a + a*sin(c + d*x))^(1/2)), x)